Optically active transition metal compounds 112^{1}. Synthesis of chiral carbonylnitrosylcobalt complexes with bidentate PP*, PN * and NN * ligands ${ }^{2}$

Henri Brunner ${ }^{\text {a.* * }}$, Peter Faustmann ${ }^{\text {a }}$, Andreas Dietl ${ }^{\text {a }}$, Bernhard Nuber ${ }^{\text {b }}$
"Instinu fïr Anorgamische Chemie der Unicersitür Regenshurg. 9:040 Regenshurg. Germany
"Anorgamisch-Chemisches Insrinut der Unit ersität Heidelberg. 69120 Heidelberg. Germany

Received 13 December 1996

Abstract

The substitution of two carbonyl groups in $\operatorname{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ by optically active unsymmetrical bidentate ligands LL • yields pairs of diastereomers $\operatorname{Co}(C O)(N O)\left(L L .^{\circ}\right)$, which differ only in the contiguration at the Co atom. LL^{\prime} can be a bisphosphane, trisphosphane. phosphaneimine or pyridineimine. For the complexes $2(\mathrm{LL}=(\mathrm{S}, \mathrm{S})$-norphos), $3(\mathrm{LL}=(\mathrm{R})-1,2,4$-triphos) and $4(\mathrm{LL}=(\mathrm{R})-1.2 .5-$ triphos) the diastereomer ratios of $45: 55$ ($2 \mathrm{a}: 2 \mathrm{~b}$), 83:17 ($3 \mathrm{a}: 3 \mathrm{~b}$) and $\mathbf{6 3 : 3 7}$ (4a:4b) respectively indicate an optical induction from the ligand to the metal contiguration during the synthesis. By crystallization it is possible to separate the diastereomers of $\mathbf{1}(\mathrm{LLL}=(\mathrm{R})$ prophos), 2 and 3. la and 3a are obtained as pure diastereomers. 2a as an enriched sample (2a:2b 73:27). The crystal structures and absolute contigurations of ($S_{C_{0},}, R_{C}$)-1a and ($\left.S_{C,}, R_{C}\right)$-3a were determined by X-ray analysis. In 3 a the cobalt center is configurationally stable at room temperature, whereas an epimerizes in beneene- d_{0} at $35^{\circ} \mathrm{C}$ with a half-life of $\tau_{1 / 2}=141 \mathrm{~min}$ and 2 a in CDCl_{3} at $24^{\circ} \mathrm{C}$ wilh $r_{1 / 2}=160 \mathrm{~min}$. © 1997 Elsevier Science S.A.

Nevorova: Chifality: Cobali(earbonyl)(nitrosyl) complexes: X-ray structure analysis

1. Introduction

In the investigation of the stereochemical course of reactions optically active organometallic complexes have become more and more important since the first example was reported [2]. Most of these complexes are of the type ($\eta^{5}-{ }^{5}{ }_{9} \mathrm{H}_{5}$) MABC or (η^{6}-arene)MABC, i.e. they have pseudo-octahedral geometry [3-6]. Purely tetrahedral chiral complexes are rare. Diastereomeric complexes of the type $\mathrm{Fe}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{NNAr}^{2}\right)\left(\mathrm{PPh}_{2} \mathrm{NRR}^{*}\right)$ [7] have been separated. As in $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$, two carbonyl groups are substitutionally labile, $\mathrm{Co}(\mathrm{CO})(\mathrm{NO})\left(L L^{*}\right)$ is a good candidate for tetrahedral complexes chiral at the metal atom. The isolation of the racemates of Co(CO)(NO)(PPh $\left.{ }_{3}\right)\left(\mathrm{AsPh}_{3}\right) \quad$ and $\mathrm{K}\left[\mathrm{Co}(\mathrm{CO})(\mathrm{NO})(\mathrm{CN})\left(\mathrm{PPhR}_{2}\right)\right][8.9]$ and of the mixture of diastereomers of $\mathrm{Co}(\mathrm{CO})(\mathrm{NO})\left(\mathrm{PPh}_{3}\right)\left(\mathrm{L}^{*}\right)\left(\mathrm{L}^{*}=\right.$ optically active carbene) [10-12] has been described.

[^0]We report herein the synthesis of new complexes of the type Co(CO)(NO)(LL'), in which the unsymmerrical ligand LL* is an optically active bisphosphane, Irispho= sphane, phosphaneimine or pyridineimine. The complexes are formed as pairs of diastereomers which differ only in the configuration at the cobalt center. For two of these complexes separation of the diastereomers has been possible by repeated crystallization. We were able to determine their absolute configurations by X -ray structure analysis.

2. Results and discussion

All the complexes were synthesized by reaction between $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ and the free ligand at an appropriate temperature (Schemes 1 and 2).

Usually a small excess of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ was used. with the exception of the reactions with the trisphos phanes. In these cases less than one equivalent of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ was employed in order to avoid complexation of all three phosphorus atoms. All the reactions were monitored by IR spectroscopy. After completion

4a, Cu COONOI(1,25-triphos)
Scheme 1.
of the reactions the products were purified by chromatography, in most cases on silica. In Table I the analytica. IR and FD MS data for the complexes 1-8 are summarized.

Whilst the complexes with the bis- and trisphosphanes are, even in solution, relatively air-stable, the complexes with the ligands containing a nitrogen donor are very air-sensitive. For the pyridineimine complexes the use of an argon atmosphere was necessary, as they are extremely sensitive to oxygen.

The IR spectra of all the complexes 1-8 extibit only one carbonyl band. This proves the substitution of two carbonyl groups in $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ and therefore indicates (together with the FD mass spectra) that all the ligands form chelate rings. The wavenumbers of both carbonyl and nitrosyl bands are lower the weaker the π-acceptor properties of the ligands, i.e. the more nitrogen donors are present. The values of 1910 and $1920 \mathrm{~cm}^{-1}$ for the carbonyl group and $1660 \mathrm{~cm}^{-1}$ for the nitrosyl group in the complexes 7 and 8 with NN ${ }^{\text {- }}$

5a,5b Co(CO)(NO)(PN1)

$6 a, 6 b \operatorname{Co}(C O)(N O)(12 N 2)$

7a,7b CurCO)(NO)(NN1)

$8 \mathrm{abb} \mathrm{Co}(\mathrm{CO})(\mathrm{NO})(\mathrm{NN} 2)$

Schemes 2.
ligands are in good agreement with the values found for other $\operatorname{Co}(\mathrm{CO})(N O)(N N)$ complexes [8]. Also the values for the complexes with PP* ligands (carbonyl frequencies in the range $1950-1960 \mathrm{~cm}^{-1}$, nitrosyl frequencies in the range $1690-1700 \mathrm{~cm}^{-1}$) are in accord with similar complexes [8,13-15]. For the PN * ligands, however, no such comparison can be made as there are no similar complexes, though attempts for their synthesis have been reported [16]. The values we found for 5 and

6 (1920 and $1690 \mathrm{~cm}^{-1}, 1930$ and $1680 \mathrm{~cm}^{-1}$ respec. tively) are intermediate between those for the NN • and PP* complexes, as expected.

The use of the optically pure ligands in the synthesis of the complexes $1-8$ leads to pairs of diastereomers \mathbf{a} / \mathbf{b}. which only differ in the contiguration at the cobatt atom. The ratio of the disistereomers can be determined by ${ }^{1} \mathrm{H}$ NMR spectroscopy, as there is at least one set of signals in which each pair of diastereomers can be

Table 1
IR spectroscopic. analytical and FD MS data for the carbonyl nitrosyl cobalt complexes 1-8

Co(CO)(NO)(LL*)	$\mathrm{IR}\left[\mathrm{cm}^{-1}\right]^{\text {a }}$		Analyses			FD MS $[e / m]^{c}\left(\mathrm{M}^{+}\right)^{\text {d }}$	Formula
$\underline{L L .}$ =	ν (CO)	$\boldsymbol{\nu}$ (NO)	C	H	N		
1 Prophos	1950	1690	63.70 (63.52)	4.97 (4.95)	2.77 (2.65)	529.4 (529.40)	$\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{CoNO}_{2} \mathrm{P}_{2}$
2 Norphos	1950	1700	66.18 (66.40)	4.84 (4.88)	2.57 (2.42)	578.8 (579.46)	$\mathrm{C}_{32} \mathrm{H}_{28} \mathrm{CoNO}_{2} \mathrm{P}_{2}$
31.2 .4 -Triphos	1961	1693	67.60 (67.68)	5.14 (5.13)	1.90 (1.93)	$695.1^{\text {c }}$ (727.61)	$\mathrm{C}_{41} \mathrm{H}_{37} \mathrm{CoNO}_{2} \mathrm{P}_{3}$
4 1.2.5-Triphos	1950	1698	67.45 (68.02)	5.27 (5.30)	1.91 (1.89)	$713.2{ }^{\text {e }}$ (741.64)	$\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{CoNO}_{2} \mathrm{P}_{3}$
5 PNI	1920	1690	65.71 (65.89)	4.65 (4.74)	5.41 (5.49)	510.2 (510.42)	$\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{CoN}_{2} \mathrm{O}_{2} \mathrm{P}$
6 PN2	1930	1680	60.13 (60.38)	4.87 (4.86)	5.67 (5.87)	478.2 (477.37)	$\mathrm{C}_{24} \mathrm{H}_{23} \mathrm{CoN}_{2} \mathrm{O}_{3} \mathrm{P}$
7 NNI	1920	1660	54.59 (55.06)	4.17 (4.31)	12.52(12.84)	32¢. 9 (327.23)	$\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{CoN}_{3} \mathrm{O}_{2}$
8 NN2	1910	1660	55.82 (56.32)	4.85 (4.73)	11.88 (12.32)	341.2 (341.26)	$\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{CoN}_{3} \mathrm{O}_{2}$

${ }^{4} \mathrm{KBr}$ pellets. strong absorptions.
${ }^{6}$ Calculated values in parentheses.

- Solvent toluene.
${ }^{4}$ Calculated M in parentheses.
${ }^{*} \mathbf{M}^{*}$ was not detected, the value given is $\mathbf{M}^{+}-\mathbf{C O}$.
differentiated. After work-up the diastereomer ratio for complexes 1. 5. 6. 7, and 8 is $50: 50$. Only for complenes 2. 3. and 4 does the ratio differ from 50:50. indicating an optical induction from the ligand to the
metal atom during the synthesis. These ratios are 2a:2b 45:55, 3a:3b 83:17, and 4a:4b 63:37. In order to separate the diastereomers we tested chromatographic methods as well as crystallization. With 1, 2, and 3 the latter

Table 2
Summary of crystal data, data collection and structure refinement for Ia and 3a

Crystal parameters		
Complex	Ia	3 a
Formula	$\mathrm{C}_{2 n} \mathrm{H}_{2 n} \mathrm{CoNO}_{2} \mathrm{P}_{3}$	$\mathrm{C}_{31} \mathrm{H}_{4} \mathrm{CONO}_{2} \mathrm{P}_{3}$
Mol, wi.	\$29,40	727.61
Color and shape	dark red. pyramidal	dark red. imegular
Size [mm']	$0.30 \times 0.75 \times 0.75$	$0,30 \times 0.35 \times 0.40$
Cryatal syatem	monoclinis	dhombic
Spaie group		P2, 2, \% , (10)
a ${ }^{\text {I }}$]	9,77005)	
$h[A]$	13.214(5)	17.070(9)
¢ [Å]	10.398(4)	19,73(1)
a tdeg	90	90
A [deg]	108.06(2)	90
γ (deg]	90	90
$V\left[\hat{A}^{\prime}\right]$	1276.3	3639.0
	2	
$0_{\text {(fit }}\left[8 \mathrm{~cm}^{-1}\right]$	1.38	1.33
F(000)	548	1512
μ (mmel	0.8\%	0). 64
Dala collection		
hat ranges	$0=14 ;-19-19 ;-15-15$	0-14:0-2.4:0-27
23^{2} fange (deg)	3.0-60,0	3, $0=58.0{ }^{\text {a }}$
Toual no, of uniyue reflections	7458	O801
No. of obverved reflections ($1>3.59$ (1)	5996	4359
Min: max. transmision factors	0.83; 1.00	0.84: 1.00
Dala refinement		
No. of reflections and 20 fange ldegl for empirical absorption correction	$7.110=45.0$	6:8,0-29,0
No, of LS parameters	307	433
Larges shin/ess.d. in linal cycle	0.010	0.025
	$\begin{gathered} -0.78 ; 0.91 \\ 0.044 ; 0.036 \end{gathered}$	$\begin{array}{r} -0.41 ; 0.49 \\ 0.043 ; 0.031 \end{array}$

[^1]method was successful. 1a and 3a were obtained as pure diastereomers, $\mathbf{2 a}$ in an enriched sample (ratio 2a:2b 73:27).

There are three ways in which trisphosphane ligands may coordinate to the cobalt atom. With 1.2,4-triphos a five-, six- or seven-membered ring and with $1,2,5$-triphos a five-, seven- or eight-membered ring is possible. However, the complexation is highly selective: ${ }^{31}$ P NMR spectroscopy shows that in the former case the fivemembered ring compound is the only product. There are only two broad resonances for the coordinated $\mathrm{Cl}-\mathrm{P}$ and C2-P (66.8 and 87.0 ppm) and two singlets for the uncoordinated C4-P phosphorus atoms (-18.00 ppm for 3 a and -17.58 ppm for $\mathbf{3 b}$). In the latter case the five-membered ring compound is the main product: the broad resonances at 68.6 and 87.2 ppm belong to the coordinated phosphorus atoms $\mathrm{Cl}-\mathrm{P}$ and $\mathrm{C} 2-\mathrm{P}$, the singlets at -15.63 and -15.57 ppm to the uncoordinated C5-P atoms (diastereomers 4b and 4a). The small doublets at -19.59 and $\mathbf{- 2 0 . 3 4} \mathrm{ppm}$ in the spectrum of 4 may be attributed to ring isomers.

Whilst in 3a. in solution, the cobalt center is configu-

Table 3
Alomic coordinates of Ia

Atom	$x / 0$	910	:/c
Co	$0.2056(1)$	0.0000	0.1347(1)
PI	$0.1154(1)$	$0.0669(1)$	$-0.068 .3(1)$
P2	$0.3108(1)$	0.1467(1)	0.2045(1)
01	$0.0081(3)$	-0.0911(2)	0.2482(3)
02	0.4505(3)	-0.0.1151(2)	$0.1104(3)$
NI	$0.0919(3)$	$-0.0509(2)$	0.2035(3)
$C 1$	$=0.1086(3)$	(0.04.46(3)	$-0.0741(3)$
C2	$=0.315047)$	$0.0627(3)$	-0.1226(4)
C	$=0.3709(1)$	0.1377(3)	- 0.2993(5)
C.	$=0.281 .3(4)$	$0.1726(3)$	-0.2870(4)
Cs	$=0.1356(3)$	0.1550(3)	$=0.2418(4)$
C6	$=0.0774(3)$	$0.0005(3)$	$=0.1336(3)$
C7	$0.016163(3)$	$=-0.0361(3)$	$=0.3189(3)$
C8	$0.0812(4)$	$=0.0840(3)$	$-0.4225(3)$
C)	$0.2230(4)$	$=0.0896(3)$	-0.4214(4)
C10	$0.3296(4)$	-0.0477(3)	-0.0.3145(4)
Cll	0.2951(3)	-0.0019(3)	$-0.2108(3)$
C12	$0.1524(3)$	$0.0061(3)$	$-0.2113(3)$
C13	$0.2160(3)$	0.1620(3)	$0.4299(3)$
Cl 4	$0.2051(4)$	$0.2054(3)$	$0.5468(4)$
C15	(0.2818(4)	$0.291(0) 3$)	0.5972(4)
Cl6	$0.3705(5)$	0.3308(3)	$0.5323(4)$
Cl 7	0.3814(4)	$0.2876(3)$	(0.4159(4)
C18	0.3026(3)	$0.2029(2)$	$0.3621(3)$
C19	$0.5600(3)$	$0.2110(3)$	$0.1412(3)$
C20	$0.7064(4)$	(0.2119(3)	$0.1615(4)$
C21	0.7962(4)	0.1567(4)	$0.2636(5)$
C22	$0.7400(4)$	0.1017(3)	$0.3455(4)$
C23	$0.5945(4)$	0.1013(3)	$0.3264(4)$
C24	$0.5017(3)$	$0.156 .3(2)$	0.2240(3)
C 25	0.2208(3)	0.2420(2)	$0.0748(3)$
C26	0.1972(3)	0.1938(2)	$-0.0632(3)$
C 27	0.0783(3)	0.2752(3)	0,0955(3)
C28	0.3537(4)	-0.0696(3)	0.1187(3)

Table 4
Atomic coordinates of 3a

Atom	x / a	y / b	:/c
Co	$0.3121(1)$	$0.0182(1)$	0.2269(1)
P1	$0.3969(1)$	0.0040(1)	$0.1258(1)$
P2	0.2258(1)	-0.2709(1)	0.0458 (1)
P3	$0.3173(1)$	-0.1060(1)	0.2389(1)
O1	0.4380(4)	$0.1109(2)$	$0.3231(2)$
02	0.0532(3)	0.0525(2)	$0.1810(2)$
N1	$0.3859(4)$	$0.0713(2)$	$0.2838(2)$
C1	0.6244(4)	$0.0815(2)$	0.1512(3)
C2	$0.7410(5)$	$0.1137(3)$	0.1348(3)
C3	0.7802(5)	$0.1163(3)$	0.0677(3)
C4	0.7038(5)	$0.0860(3)$	0.0181(3)
C5	0.5857(5)	$0.0541(3)$	$0.0341(2)$
C6	$0.5448(4)$	$0.0513(3)$	$0.1017(2)$
C7	$0.2531(5)$	$0.1004(3)$	0.0456(3)
C8	$0.1600(5)$	$0.1208(3)$	$-0.0006(3)$
C9	$0.0992(5)$	$0.0648(4)$	-0.0371(3)
C10	$0.1301(5)$	-0.0089(3)	-0.0276(2)
C11	$0.2236(4)$	-0.0298(3)	$0.0193(2)$
Cl 2	$0.2860(4)$	0.0250(3)	$0.0567(2)$
C13	$0.0200(5)$	-0.3577(4)	0.0862(3)
Cl4	-0.0436(7)	-0.4173(4)	$0.1191(3)$
C15	$0.0226(7)$	-0.4646(4)	0.1599(3)
C16	$0.1508(6)$	-0.4556(3)	$0.1690(3)$
Cl 7	$0.2181(5)$	-0.3991(3)	$0.1351(3)$
C18	$0.1524(5)$	-0.3491(3)	$0.0922(3)$
C19	$0.2351(4)$	-0.2731(3)	-0.0943(2)
C20	$0.267(5)$	$0.3020(3)$	-0.1573(3)
C21	$0.3256(6)$	-0.3718(3)	$0.1629(3)$
C22	$0.3505(6)$	--0.4129(3)	-0.106.3(3)
C23	$0.3200(6)$	$-0.3854(3)$	-0.0430(3)
C24	$0.2621(t)$	-0.3146(3)	-0.0364(2)
C25	$0.5629(4)$	-0.1044(3)	(0.2960(2)
C26	$0.6622(5)$	-0.1332(3)	$0.3350(2)$
C\%7	0.6487(4)	$=0.2004(3)$	0, $3693(3)$
C28	0.5355(5)	-0.2408(3)	$0.3651(3)$
C29	0.4363(5)	-0.1.138(3)	$0.3255(3)$
cal	(). A (4)g(4)	- 0.1449(3)	$0.291(1)$
C.3	0.147.3(4)	$=0.1447(3)$	0.3407(3)
C32	(0.0535(5)	$=0.1875(3)$	$0.3728(3)$
C33	$=0.0110(5)$	-0.2429(3)	0,3966(3)
C3t	(0,014)(4)	-0. $\mathbf{2 5 3 9 9}(3)$	$0.2694(3)$
C35	(0.1098(4)	$=0.2117(3)$	$0.2888(2)$
C36	$0.1794(4)$	-0.1576(2)	$0.3931(5)$
C37	0.4413(4)	-00.0964(2)	0.115(43)
C38	0.3457(4)	-0.1487(2)	(0.1534(3)
C39	$0.3930(4)$	-0.2317(2)	$0.1535(2)$
C40	$0.3896(4)$	$-0.3676(3)$	$0.0831(2)$
CHI	0.1548(4)	(0.0380(3)	$0.20106(2)$

rationally stable at room temperature, 1a and 2 a do epimerize with respect to the cobalt configuration. We measured the rate of the epimerization by ${ }^{\prime} \mathrm{H}$ NMR spectroscopy. The equilibrium ratio of the diastereomers is identical to the ratio found after the preparation of the complexes (1a:1b 50:50, 2a:2b 45:55). Both a 0.03 M solution of pure 1a and a 0.01 M solution of $2 \mathrm{a}: 2 \mathrm{~b}$ in a 73:27 mixture obeyed a first-order rate law (1a in benzene- d_{6} at $35^{\circ} \mathrm{C}: k=8.22 \times 10^{-5} \mathrm{~s}^{-1}$. $\tau_{1 / 2}=$ 141 min ; 2 a in CDCl_{3} at $24^{\circ} \mathrm{C}: k=7.32 \times 10^{-5} \mathrm{~s}^{-1}$.

Fig. 1. platon view of ia showing the labeling scheme used. Hydrogen atoms have been omitted for clarity. Thermal ellipsoids enclose $\mathbf{5 0 \%}$ probability levels.
$T_{1 / 2}=160 \mathrm{~min}$). The addition of equimolar amounts of $(R)=(+)$-prophos, dppe or trisisopropylphosphane did not change the rate of epimerization and no products of exchange reactions were detected. Using higher concentrations of the complexes also had no effect on the reaction rate. Measurements of the rate constants at different temperatures allowed us to estimate the activation enthalpy ΔH^{*} and entropy ΔS^{*} of the reaction. For both complexes we found $\Delta H^{*} 90 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta s^{7}+30 \mathrm{k}^{=1} \mathrm{~mol}^{-1}$. These results indicate that the epimerization is an intramolecular process. However. it is not possible to distinguish between a rearrangement involving an intermediate square planar species and a dissociative mechanism with opening of the chelate ring. Further experiments are underway to elucidate this point.

In the complexes 9 and 8 with NN * ligands the cobalt configuration is more labile than in the com-

Fig. 2. matin view of 3a showing the labeling wheme used. Hydrogen aroms have been omitted for clarity. Thermal ellipsoids enclose 30% probability levels.
plexes with PP* ligands. This was proven by coalescence experiments in DMSO- d_{6}. For 7 a coalescence temperature T_{C} of 406 K and for 8 of 413 K was found. The rate constants $k_{T_{c}}$ and ΔG^{*} values were calculated for 7: $k_{T_{\mathrm{C}}}=38.0 \mathrm{~s}^{-1}, \Delta G^{*}=87.5 \mathrm{~kJ} \mathrm{~mol}^{-1}$, and for 8: $k_{T_{\mathrm{c}}}=51.3 \mathrm{~s}^{-1}, \Delta G^{7}=88.1 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Extrapolation to room temperature shows that the complexes 7 and 8 epimerize approximately 100 times faster than the complexes 1 and 2. This explains why we could not separate the diastereomers $\mathbf{7 a}, \mathbf{7 b}$ and $\mathbf{8 a}, \mathbf{8 b}$.

3. X-ray structure analysis of 1a and 3a

Single crystals for X-ray structure analysis were obtained of the pure diastereomers 1a and 3a. Details of both structure determinations have been deposited with the numbers CSD-406185 (1a) and CSD-40186 (3a) at the Fachinformationszentrum Karlsruhe.

Table 2 gives details of the data collection, structure refinement and crystal data of the complexes 1a and 3a. In Tables 3 and 4 the positional parameters are summarized, employing the atom-labeling scheme used in Figs. 1 and 2, and in Tables 5 and 6 selected bond distances and angles are listed.

As expected the coordination geometry of both complexes is a distorted tetrahedron about the cobalt center. Unlike for other complexes of this type, we were able to distinguish the CO and NO groups [10,11]. Therefore we could determine the absolute configuration of both complexes by refinement of the least-squares variable η [17] (for la $\eta=1.06(2)$ and for $3 a \eta=0.89(3)$). La and
 $N(N O)$ distances in 19 ($1.641 \AA$) and $3 \mathrm{~m}(1.653 \AA)$ as well as the $\mathrm{Co}=\mathrm{C}(\mathrm{CO})$ distances ($1.766 \AA$ ar $11.757 \AA$ respectively) lie in the normal range found for other

Table s
Selected bond lengths $|\hat{A}|$ and angles [deg] of ta with estimated standard deviations in parentheses

$\mathrm{CO}=\mathrm{Pl}$	$2.204(1)$	$\mathrm{Pl}-\mathrm{Cl} 2$	$1.823(3)$
$\mathrm{Co}=\mathrm{P}$	2. 2090 (1)	$\mathrm{Pl} \mathrm{Cl}_{26}$	1.852(3)
$\mathrm{Co}=\mathrm{NI}$	$1.641(3)$	P2-C18	1.8.3(3)
$\mathrm{CO}-\mathrm{C} 28$	$1.766(4)$	P2 $=$ C24	1.817(3)
$\mathrm{Nl}=01$	$1.184(5)$	P2-C25	$1.855(3)$
C28 $=02$	1.146(5)	C35-C26	1.921(t)
$\mathrm{Pl}=\mathrm{Cb}$	1.820(3)	C35-C27	1.537(5)
$\mathrm{Pl}=\mathrm{Co}-\mathrm{P} 2$	8*,340)	Co-Pl-C26	107.2(1)
$\mathrm{Pl}-\mathrm{Co}-\mathrm{Nl}$	14.3.3)	$\mathrm{CO}=\mathrm{P}=\mathrm{Cl} 18$	$120.5(1)$
$\mathrm{Pl}=\mathrm{CO}=\mathrm{C}_{28}$	109.4(1)	$\mathrm{CowP2-C24}$	$117.0(1)$
$\mathrm{P} 2-\mathrm{Co}-\mathrm{Ni}$	$121.7(1)$	$\mathrm{CO}-\mathrm{P2}-\mathrm{C} 25$	$106.8(1)$
$\mathrm{P}=\mathrm{Co}^{\text {- }} \mathrm{C} 88$	100.2(1)	$\mathrm{C} 6-\mathrm{Pl}=\mathrm{Cl}_{2}$	102.4(1)
$\mathrm{Nl}-\mathrm{Co}=\mathrm{C} 28$	120.9(2)	C6-P1-C26	104.0(1)
$\mathrm{CO}-\mathrm{Nl}=\mathrm{Ol}$	176.8(3)	C12-P1-C26	$103.2(2)$
$\mathrm{CO}-\mathrm{C} 28-\mathrm{O} 2$	179.013)	C18-P2-C24	$101.6(1)$
C0-PI-C6	$119.1(1)$	C18-P2-C25	103.5(1)
$\mathrm{Co}-\mathrm{Pl}-\mathrm{Cl} 2$	188.91)	C24-P2-C2S	105.8(1)

Table 6
Selected bond lengths [$\AA \AA$] and angles [deg] of 3a with estimated standard deviations in parenthese.

Co-Pl	$2.197(2)$	P2-C18	$1.826(5)$
Co-P3	2.210(2)	P2-C24	1.835(5)
$\mathrm{Co}-\mathrm{Nl}$	$1.653(4)$	P2-C40	1.855(4)
Co-C4!	1.757(5)	P3-C30	1.850(5)
$\mathrm{N} 1-\mathrm{Ol}$	$1.177(6)$	P3-C36	$1.832(5)$
C41-02	1.158(6)	P3-C38	1.871(4)
P1-C6	1.819(5)	C37-C38	1.557(6)
Pl-C12	1.826(4)	C38-C39	1.548(6)
Pl-C37	1.845(4)	C39-C40	$1.546(6)$
$\mathrm{Pl}-\mathrm{Co}-\mathrm{P} 3$	88.5(1)	Co-P3-C36	121.0(1)
$\mathrm{Pl}-\mathrm{Co}-\mathrm{Nl}$	119.6(1)	Co-P3-C38	107.9(1)
Pl-Co-C4I	97.6(1)	C6-PI-C12	104.4(2)
P3-Co-NI	118.7(1)	C6-Pl-C37	101.4(2)
P3-C0-C41	104.6(2)	C12-P1-C37	105.6(2)
$\mathrm{Nl}-\mathrm{Co}-\mathrm{Cl} 1$	121.5(2)	C18-P2-C24	102.2(2)
$\mathrm{Co}-\mathrm{Nl}-\mathrm{Ol}$	178.0(4)	C18-P2-C40	102.5(2)
$\mathrm{Co}-\mathrm{C41-02}$	177.2(4)	C24-P2-C40	99.4(2)
Co-P1-C6	121.8(2)	C30-P3-C36	101.2(2)
Co-P1-Cl2	113.5(1)	C30-P3-C38	103.5(2)
Co-P1-C37	108.4(1)	C36-P3-C38	104.9(2)
Co-P3-C30	116.5(2)		

$\mathrm{Co}(\mathrm{CO})(\mathrm{NO})$ complexes [$10,15,18$]. The same holds for the $\mathrm{N}-\mathrm{O}$ and $\mathrm{C}-\mathrm{O}$ distances ($1.184 \AA$ and $1.146 \AA$ in 1a. $1.177 \AA$ and $1.158 \AA$ in 3a). The NO and CO groups are found to be nearly linear (angles range from 176.8° to 179.0°) in accord with known complexes. Also all the Co-P distances in la and 3a have normal values (2 $204 \AA$ and $2.209 \AA$ in 1a. $2.197 \AA$ and $2.210 \AA$ in $3 a$). As in both complexes the ligand forms a tive-membered ring with the Co center, the angles $\mathrm{P}-\mathrm{Co}-\mathrm{P}$ are much smaller (88.30 in la, 88.50 in $3 a$) than in $\mathrm{Co}(\mathrm{CO})(\mathrm{NO})$ complexes with four unidentate ligands [$10,15,18$], but they are within the normal range for this kind of metallacyele [19]. Ia deviates remarkably from expectation: the methyl group of the prophos ligand is not in an equatorial but in an axial position of the five-membered ring [20]. In 3a, however, the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{PPh}_{2}$ group is in the expected equatorial position.

4. Experimental

All the complexes were prepared under an atmosphere of dried nitrogen (complexes 1-6) or argon (complexes 7 and 8). Solvents were dried and distilled prior to use, according to standard procedures. Infiared spectra were recorded on a Perkin-Elmer Paragon 1000 PC FT-IR and a Beckman IR 4240 spectrometer. 'H and ${ }^{31} P$ NMR spectra were obtained on a Bruker AC 250 and a Bruker ARX 400 spectrometer [250.13 or $400.13 \mathrm{MHz}\left({ }^{(} \mathrm{H}\right)$ and $\left.161.98 \mathrm{MHz}\left({ }^{31} \mathrm{P}\right)\right]$. Chemical shifts are in ppm downfield from TMS or $85 \% \mathrm{H}_{3} \mathrm{PO}_{+}$ respectively. FD mass spectra were determined on a Finnigan MAT 95 instrument. Optical rotations were
measured with a Perkin-Elmer 241 polarimeter. Microanalyses were carried out by the microanalytical laboratory of the University of Regensburg.

Literature methocs were used to prepare the eight ligands as indicated in the individual procedures. $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ was prepared by the method of Hieber et al. [21], it was stored under nitrogen at $-25^{\circ} \mathrm{C}$ and not purified further prior to use.

4.1. General procedure for synthesis of the complexes 1-8

At $0^{\circ} \mathrm{C}$ the required amount of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})$ was dissolved in toluene or THF respectively. After addition of the ligand the solution was slowly warmed up to the appropriate temperature and kept at this temperature until the reaction was complete. During this time the color of the solution turned from orange to dark red or brown. Then the solution was concentrated and filtered or chromatographed to remove decomposition products. From the resulting solution the solvent was evaporated and the residue was recrystallized if necessary.

4.2. Co(CO)(NO)(prophos) la.1b

A mixture of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})(0.70 \mathrm{~g}, 4.0 \mathrm{mmol})$ and (R)-(+)-1,2-bis(diphenylphosphanyl)propane (prophos) [22] ($1.48 \mathrm{~g}, 3.6 \mathrm{mmol}$) was refluxed in 20 ml of toluene for 16 h . The crude product was purified by chromatography on Sephadex $\mathrm{LH}-20$ with $\mathrm{CH}_{3} \mathrm{Cl}_{2}$. After evaporaling the solvent a red powder was obtained. Yield $1.16 \mathrm{~g}(62 \%)$ molar ratio la:1b $50: 50$. ${ }^{1}$ H NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta 0.70\left(\mathrm{dd} .{ }^{3}\left(\mathrm{CH}_{3} \mathrm{~m} \mathrm{CH}\right)=7.1 \mathrm{~Hz},{ }^{3} / \mathrm{JCH},-\mathrm{P}\right)=$ $12.0 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$ (ib)), 0.93 (dd. $\mathrm{J}^{\mathrm{J}}\left(\mathrm{CH}_{3} \mathrm{CH}\right)=$ $\left.7.1 \mathrm{~Hz} .{ }^{3} /\left(\mathrm{CH}_{3}-\mathrm{P}\right)=12.0 \mathrm{~Hz}, 3 \mathrm{H} . \mathrm{CH}_{3}(1 \mathrm{a})\right), 2.14=$ 2.61 (m, 5H. $\mathrm{CH}_{2}-\mathrm{CH}$ (1a) and $\left.\mathrm{CH}_{2}(1 \mathrm{~b})\right), 2.78-3.01$ ($\mathrm{m} .1 \mathrm{H}, \mathrm{CH}(\mathrm{lb})$), $7.24-7.85\left(\mathrm{~m}, 40 \mathrm{H}\right.$. phenyl-H). ${ }^{3} \mathrm{P}$ NMR (toluene- d_{8}): $\delta \mathbf{6 5 . 6}$ (br. IP (1b)), 69.9 (br. IP (1a)), 86.7 (br, 2P (1a) and (1b)).

4.2.1. Separation of the diastereomers

$\mathrm{At}-18^{\circ} \mathrm{C}$ pentane was condensed into a solution of 3.0 g of 1a:1b $50: 50 \mathrm{in} 20 \mathrm{ml}$ of toluene. After several days red crystals formed. With these crystals the procedure was repeated five times. Finally the pure diastereomer 1a was obtained as crystals suitable for X-ray analysis. Yield $350 \mathrm{mg}(12 \%)$, m.p. $197-198^{\circ} \mathrm{C} .[\alpha]_{1}^{\text {ps }}$ $=-38$ (c 1. toluene).

4.3. ColCOl(NO)(norphos) $2 a .2 b$

After refluxing a mixture of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})(0.80 \mathrm{~g}$. 4.6 m mol) and (S.S)-(+)-5.6-bis -(diphenylphosphanyl)bicyclo[2.2.1]hept-2-ene (norphos) [23.24] ($2.0 \mathrm{~g}, 4.3 \mathrm{mmol}$) in 20 ml of totuene for 16 h the solution was filtered over a small amount of silica. The
solvent was removed to provide $\mathbf{2 a}, \mathbf{2 b}$ as a reddish brown solid. Yield $1.97 \mathrm{~g}(78 \%)$, molar ratio $2 \mathrm{a}: 2 \mathrm{~b}$ 45:55. ${ }^{1} \mathrm{H}$ NMR (CDCl_{3}): $\delta \mathbf{0 . 7 4 - 3 . 0 9 (m , 6 H}$, aliph. H), 5.13 (dd, ${ }^{3} J==5.5 \mathrm{~Hz},{ }^{3} J=2.6 \mathrm{~Hz}, 0.55 \mathrm{H},=\mathrm{CH}$ (2b)), 5.20 (dd, ${ }^{3} \mathrm{~J}=5.5 \mathrm{~Hz},{ }^{3} \mathrm{~J}=2.6 \mathrm{~Hz}, 0.45 \mathrm{H},=\mathrm{CH}$ (2a)), 6.04-6.09 (m. $1 \mathrm{H},=\mathrm{CH}) .7 .15-7.81(\mathrm{~m}, 20 \mathrm{H}$, phenyl-H). ${ }^{31} \mathrm{P}$ NMR (toluene- d_{8}): $\delta 47.4$ ($\mathrm{br}, \mathrm{IP}(2 \mathrm{~b})$), 48.7 (br, IP (2a)), 53.7 (br, 2P (2a) and (2b)).

4.3.1. Separation of the diastereomers

The same procedure as described above for la was followed. Red brown crystals were obtained containing 2a:2b in a molar ratio of $73: 27$, m.p. $182-184^{\circ} \mathrm{C}$. $[\alpha]_{0}^{3}=-47$ (e 1, toluene).

4.4. CorCONNO (1.2.4-triphos) 3a.3b

A mixture of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})(1.1 \mathrm{~g}, 6.4 \mathrm{mmol})$ and (R)-(+)-1.2.4-tris(diphenylphosphanyl)butane (1.2.4triphos) [25] ($4.0 \mathrm{~g} .6 .5 \mathrm{~m} \cdot \mathrm{nol}$) in 40 ml of THF was refluxed for 3 h . After removal of the solvent, the residue was chromatographed on silica. Elution with THF;petroleum ether $40=60$ (1:1) gave an orange band. Evaporating the solvent afforded 3a,3b as an orange powder. Yield 4.4 g (95%), molar ratio $3 \mathrm{3a}: 3 \mathrm{~b}$ 83: $17{ }^{\prime} \mathrm{H}$ NMR (CDCl_{3}); $\delta 0.74=0.89\left(\mathrm{~m}, 0.17 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{2}(3 \mathrm{~b})\right.$). $1.08=1.20\left(\mathrm{~m}, 0.83 \mathrm{H}, \mathrm{C} 3 \mathrm{H}_{\mathrm{z}}(3 \mathrm{a})\right), 1.34=1.49(\mathrm{~m}, 0.17 \mathrm{H}$. $\left.\mathrm{C}_{3} \mathrm{H}_{3}(\mathbf{3 b})\right), 1,6=1,73\left(\mathrm{~m}, 0,83 \mathrm{H}, \mathrm{C}_{3} \mathrm{H}_{3}(3 \mathrm{a})\right), 1.79=$ $1.91\left(\mathrm{~m} .1 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{3}\right), 1.98=2.13\left(\mathrm{~m} .1 .83 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}\right.$ and $\mathrm{ClH}_{3}(3 \mathrm{~B})$), $2.27=2,37\left(\mathrm{~m}, 0,17 \mathrm{H}, \mathrm{ClH}_{3}(3 \mathrm{~b})\right), 2,47=$ $2.59(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} 2 \mathrm{H}), \mathbf{2 , 6 9 = 2 , 8 5}\left(\mathrm{m}, 1 \mathrm{H}, \mathrm{C} \mid \mathrm{H}_{2}\right), 7,10=$ $7.47(\mathrm{~m}, 28 \mathrm{H}$, phenyl H). $9.76=9.84(\mathrm{~m}, 2 \mathrm{H}$, phenyl H$)$.
${ }^{7}{ }^{P}$ NMR (CDCl_{3}) $\delta=18.00(\mathrm{~s}, 0.83 \mathrm{P}(3 \mathrm{a})),=17.58$ (s. 0.17 P (3b)), 66.8 (br, IP), 87.0 (br, IP),

4.4.1. Separation of the diastereomers

To a $\mathrm{CH}_{2} \mathrm{Cl}_{3}$ solution pentane was slowly added. then the solution was cooled to $=18^{\circ} \mathrm{C}$. Red crystals. suitable for X-ray analysis, of pure 3a were obrained. m.p. $198=201^{\circ} \mathrm{C},[\alpha]_{10}^{33^{3}}=-125\left(\mathrm{c} 1.17, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$).

4.5. ColCOKNOM 1.2 .5 -triphos) 4a.4b

A solution of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})(0.16 \mathrm{~g}, 0.93 \mathrm{mmol})$ and $(\mathrm{R})-(+$) $1,2.5$-tris(diphenylphosphanyl) pentane (1,2.5triphos) [25] (0.70 g .1 .12 mmol) in 125 ml of THF was refluxed for 22 h . Chromatography on silica with THF;petroleum ether $40=60(3: 5)$ afforded an orange band. After removal of the solvent $4 \mathrm{a}, 4 \mathrm{~b}$ was obtained as an orange solid. Yield 0.68 g (99%), molar ratio 4a:4b 63:37. m.p. $115^{\circ} \mathrm{C}, ~[\alpha]_{10}^{25}=-68$ c 0.93 , $\mathrm{CH}_{2} \mathrm{Cl}_{2}$). ${ }^{1} \mathrm{H}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$) : $\delta 0.63-0.75(\mathrm{~m}, 0.37 \mathrm{H}$, $\mathrm{C}_{4} \mathrm{H}_{2}(4 \mathrm{~b}), 1.01-1.12\left(\mathrm{~m}, 0.63 \mathrm{H}, \mathrm{C} 4 \mathrm{H}_{2}(4 \mathrm{a})\right), 1.14-$ $1.26\left(\mathrm{~m}_{3}, 1 \mathrm{H}, \mathrm{C} 3 \mathrm{H}_{3}\right), 1.22-1.71\left(\mathrm{~m}, 4 \mathrm{H}_{1}, \mathrm{C}_{3} \mathrm{H}_{2}, \mathrm{C} 4 \mathrm{H}_{3}\right.$ and $\left.\mathrm{C}_{2} \mathrm{H}_{2}\right), 1.93-2.41\left(\mathrm{~m}, 2.63 \mathrm{H}, \mathrm{ClH}_{2}\right.$ and C 2 H (4a)), 2.56=2.72 (m, 0.37H, C 2 H (4b)), 6.87-7.56 (m.

26 H , phenyl-H), $7.65-7.98$ ($\mathrm{m}, 4 \mathrm{H}$, phenyl- H). ${ }^{31} \mathrm{P}$ NMR ($\mathrm{C}_{6} \mathrm{D}_{6}$): $\delta-15.63$ (s, 0.37P (4b)), -15.57 (s , 0.63P (4a)), 68.6 (br, IP), 87.2 (br, IP).

4.6. $\mathrm{Co}(\mathrm{CO})(N O)(P N I) 5 a .5 b$

A solution of $\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})(0.95 \mathrm{~g}, 5.5 \mathrm{mmol})$ and (R)-(+)-(diphenyl)- 2 -[$\mathrm{N}-\mathrm{l}^{1}$-phenylethylaldimino]phenylphosphane (PNI) [26] ($2.0 \mathrm{~g}, 5.1 \mathrm{mmol}$) in 60 ml of toluene was stirred for 12 h at $80^{\circ} \mathrm{C}$. After removal of the solvent the black residue was chromatographed on silica. Elution with toluene:petroleum ether 40-60 (1:1) gave a brown band which provided $\mathbf{5 a}, \mathbf{5 b}$ after evaporating the solvent. Recrystallization from ethanol yielded black crystals with a molar ratio of 5a:5b 50:50. Yield $1.9 \mathrm{~g}(73 \%)$. ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 1.87\left(\mathrm{~d},{ }^{3} \mathbf{J}\left(\mathrm{CH}_{3}-\right.\right.$ $\left.\mathrm{CH})=6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.93\left(\mathrm{~d},{ }^{3} J\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=\right.$ $\left.6.7 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 5.16\left(\mathrm{q},{ }^{3}\right)\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.7 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}), 5.26\left(\mathrm{q},{ }^{3}\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right), 7.14-$ $7.54\left(\mathrm{~m} .38 \mathrm{H}\right.$. phenyl-H) $8.36\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{CH}-\mathrm{P})=1.6 \mathrm{~Hz}\right.$, $1 \mathrm{H},=\mathrm{CH}), 8.43\left(\mathrm{~d},{ }^{4} J(\mathrm{CH}-\mathrm{P})=1.6 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}\right)$. ${ }^{31} \mathrm{P}$ NMR (CDCl_{3}): $\delta \mathbf{5 3 . 3}$ (br).

4.7. $\mathrm{Co}(\mathrm{COH}(\mathrm{NO})(P \mathrm{PN} 2) 6 \mathrm{a} .6 \mathrm{~b}$

The mixitre of $\operatorname{Co}(\mathrm{CO})_{3}(\mathrm{NO})(1.0 \mathrm{~g} .5 .8 \mathrm{mmol})$ and $(R)=(-)$)(diphenyl)-2-(N-1'-hydroxybut-2'。 ylaldiminolphenylphosphane (PN2) [27] (1.8g. 5.0 mmol) in 50 ml of toluene was stirred for 16 h at $80^{\circ} \mathrm{C}$. The solvent was evaporated and the residue was chromatographed on silica. Elution with ethyl acetate;peroleum ether 40=60(2:1) gave a brown band. After removal of the solvent and recrystallization from ethanol black crystals were obtained. The molar ratio of 6a:6b was $50: 50$. Yield $1.58 \mathrm{~g}(69 \%)$. ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}\right)$: $\left.\delta 0.49\left(\mathrm{t}^{3}{ }^{3} / \mathrm{CH}_{3}-\mathrm{CH}_{2}\right)=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 0.81(\mathrm{t}$. $\left.{ }^{3} J\left(\mathrm{CH}_{3}-\mathrm{CH}_{2}\right)=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.43-2.25(\mathrm{~m} .6 \mathrm{H}$. $\mathrm{C}=\mathrm{CH}_{2}$ and OH), $3.28=3.69\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}=\mathrm{CH}_{2}\right), 4.21-$ $4.31(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}), 4.42-4.48(\mathrm{~m}, \mathrm{IH}, \mathrm{CH}), 7.03=7.59$ (m .28 H , phenyl-H), 8.29 ($s, 2 \mathrm{H},=\mathrm{CH}$). ${ }^{31} \mathrm{P}$ NMR $\left(\mathrm{CDCl}_{3}\right):$ © 53.0 (br).

4.8. Co(COMNOINNI) 7a.7b

Under an atmosphere of argon a solution of $\mathrm{Co}(\mathrm{CO})$, NO) (1.6 g .9 .3 mmol) and (S)-($-1-\alpha-$ methylN (2-pyridinylmethylene)benzenemethaneamine (NNI) [28.29] ($1.8 \mathrm{~g}, 8.6 \mathrm{mmol}$) in 50 ml of toluene was stirred for 4 h at $50^{\circ} \mathrm{C}$. Then the solution was filtered and concentrated. Atter addition of petroleum ether 40-60 the solution was cooled to $-18^{\circ} \mathrm{C}$ to afford black crystals of 7 a .7 b . molar ratio $50: 50$. Yield $1.9 \mathrm{~g}(73 \%)$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta \quad 1.76$ (d. ${ }^{3} \mathrm{~J}\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=$ $\left.6.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.83\left(\mathrm{~d} .{ }^{3} . /\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right.$, CH_{3}), $5.17(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}), 7.08-7.75(\mathrm{~m}, 18 \mathrm{H}$, phenyl-H
and $p y-H), 8.84\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{CH}-\mathrm{CH})=3.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}\right)$, $8.90\left(\mathrm{~d},{ }^{4} \mathrm{~J}(\mathrm{CH}-\mathrm{CH})=3.0 \mathrm{~Hz}, 1 \mathrm{H},=\mathrm{CH}\right)$.

4.9. $\mathrm{Co}(\mathrm{CO})(N O)(N N 2) 8 a, 8 b$

$\mathrm{Co}(\mathrm{CO})_{3}(\mathrm{NO})(1.6 \mathrm{~g}, ~ 9.3 \mathrm{mmol})$ and $(\mathrm{S})-(-)-\alpha-$ methyl- N-[1-(2-pyridinyl)ethylidene]henzenemethaneamine (NN2) [29] ($2.0 \mathrm{~g}, 8.9 \mathrm{mmol}$) were treated the same way as described for 7a,7b. The complex 8a,8b was obtained as black crystals. Yield $2.3 \mathrm{~g}(\mathbf{7 5 \%})$. ${ }^{1} \mathrm{H}$ NMR (DMSO- d_{6}): $\delta 1.87\left(\mathrm{~d}^{3}{ }^{3} \mathrm{~J}\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.5 \mathrm{~Hz}, 3 \mathrm{H}\right.$, $\left.\mathrm{CH}_{3}\right), 1.92\left(\mathrm{~d},{ }^{3} \mathrm{~J}\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.53$ $\left(\mathrm{s}, \mathbf{6 H}, \quad=\mathrm{C}-\mathrm{CH}_{3}\right), 5.47\left(\mathrm{q},{ }^{3} \mathrm{~J}\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}, \mathrm{CH}), 5.55\left(\mathrm{q},{ }^{3} \mathrm{~J}\left(\mathrm{CH}_{3}-\mathrm{CH}\right)=6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}\right)$, $7.19-8.20(\mathrm{~m}, 16 \mathrm{H}$, phenyl-H and py-H3, H4, H5), 9.36 (m, 2H, py-H6).

4.10. X-ray structure analysis of $1 a$

X-ray diffraction data were collected at $20^{\circ} \mathrm{C}$ with a Syntex-Nicolet R3 diffractometer using Mo $\mathrm{K} \alpha$ radiation ($\lambda=0.71073 \AA$) with a graphite crystal monochromator. The structure was solved using Patterson-Fourier methods with shelxl.s Release $4.2 / 800$ programs [30] on a Micro VAX II computer. The hydrogen atoms were calculated by the option hFIX of the shelxls program package.

4.11. X-ray structure analysis of 3 a

X-ray diffraction data were collected at $-70^{\circ} \mathrm{C}$ with a Sienens Stoe AED II diffractometer using Mo K α radiation ($\lambda=0.71073 \AA$) with a graphite crystal monochromator. The structure was solved using direet methods with shelxtl plus Release 4.2/800 programs [30] on a Micro VAX II computer. The hydrogen atoms were calculated by the option HFIX of the SheLxTL. Plus program package.

Acknowledgements

We thank the Deutsche Forschungsgemeinschaft, the Fonds der Chemischen Industrie, and the BASF AG, Ludwigshafen, Germany, for support of this work.

References

[1] H. Brunner, J. Bügler, B. Nuber, Tetrahedron Asymm. 7 (1996) 3095.
[2] H. Brunner, Angew. Chem. 81 (1969) 395; Angew. Chem., Int. Ed. Engl. 8 (1969) 382.
[3] H. Brunner, Adv. Organomet. Chem. 18 (1980) 151.
[4] G. Consiglio, F. Merandini, Chem. Rev. 87 (1987) 761.
[5] K. Blackburn, S.G. Davies, M. Whittaker, in I. Bernal (Ed.), Chemical Bonds - Better Ways to Make Them and to Break Them, Elsevier, New York, 1989, p. 141.
[6] G.A. Stark, M.A. Dewey, G.B. Richter-Addo, D.A. Knight, A.M. Arif, J.A. Gladysz, in H. Wemer, J. Sundermeyer (Eds.), Stereoselective Reactions of Metal-Activated Molecules, Vieweg, Stuttgart, 1995, p. 51.
[7] H. Brunner, W. Miehling. Angew. Chem. 95 (1983) 162; Angew. Chem., Int. Ed. Engl. 22 (1983) 84.
[8] W. Hieber, J. Ellermann, Chem. Ber. 96 (1963) 1643.
[9] H. Brunner, H.-D. Schindler, E. Schmidt, M. Vogel. J. Organomet. Chem. 24 (1974) 515.
[10] A.W. Coleman, P.B. Hitchcock, M.F. Lappert, R.K. Maskell, J.H. Muller, J. Organomet. Chem. 296 (1985) 173.
[11] A.W. Coleman, P.B. Hitchcock, M.F. Lappert, R.K. Muskell, J.H. Muller, J. Organomet. Chem. 250 (1983) C9.
[12] M.F. Lappert. P.L. Pye, J. Chem. Soc., Dalton Trans. (1977) 2172.
[13] E.M. Thornsteinson, F. Basolo. Inorg. Chem. 5 (1966) 1691.
[14] W.D. Horrocks, R.C. Taylor, Inorg. Chem. 2 (1963) 723.
[15] J.T. Lin, S.Y. Wang, Y.C. Chou, M.L. Gong, Y.-M. Shiows. H.-M. Gau, Y.S. Wen. J. Organomet. Chem. 508 (1996) 183.
[16] E.P. Ross, G.R. Dobson, Inorg. Chem. 6 (1967) 1256.
[17] D. Rogers. Acta Crystallogr. A37 (1981) 734.
[18] V.G. Albano, P.L. Bellon, G. Ciani, J. Organomet. Chem. 38 (1972) 155.
[19] D. Carmona, F.J. Lahoz. L.A. Oro, M.P. Lamata. F. Viguri. E.S. Jose, Organometallies 15 (1996) 2961.
[20] H. Brunner, A. Winter, J. Breu, J. Organomet. Chem., in press.
[21] W. Hieber, E.O. Fischer, E. Bickly, Z. Anorg. Allg. Chem. 269 (1952) 308.
[22] M.D. Fryzuk. B. Bosnich, J. Am. Chem. Soc. IOO (1978) $\$ 491$.
[23] H. Brunner, W. Pieronczyk. Angew. Chem. 91 (1979) 695: Angew, Chem., Int. Ed. Engl. 18 (1979) 620.
[24] H. Brunner, W. Pieronczyk, B. Schönhammer, K. Streng. I. Bernal, J. Korp. Chem. Ber. 114 (1981) 1139.
[25] H. Brunner. H.oJ. Lautenschlager, Synthesis (1989) 706.
[26] H. Brunner, A.F.M.M. Rahman, Chem. Ber. 117 (1984) 710.
[27] H. Brunner, J. Furst. Inorg. Chim. Acta 220 (1994) 63.
[28] F. Nerdel, K. Becker, G. Kresze. Chem. Ber. 89 (1956) 2862.
[29] H. Brunner, B. Reiter, G. Riepl, Chem. Ber. 119 (1984) 1330.
[30] G.M. Sheldrick. shel.xls, shel.xtl. ph.us. A Program for Crystal Structure Determination. Siemens Analytical X-Ray Instruments, Madison. WI. 1990.

[^0]: Corresponding author.
 ' For Part III see Ref. [1].
 ${ }^{2}$ Dedicated to Professor Wolfgang Beck on the occasion of his 65th birthday.

[^1]: ${ }^{2}$ Friedel pairs measured between 3° and 40°; $: 1-10: k: 1-17: 1:-19-(-1)$.
 ${ }^{n} R=\sum\left\|F_{0}=F_{i}\right\| / F_{i}$.
 ${ }^{\varepsilon} R_{w}=\Sigma\left\|F_{0}\left|=\left|F_{v} \| w^{\prime} / 2 / F_{v}\right| w^{1 / 2}, w=1 / \sigma^{2}\left(F_{0}\right)\right.\right.$.

